Formation of the First Heterobimetallic Phosphido-bridged σ - π -Acetylide Complex $[(C_5H_5)_2Ti(\mu-\sigma,\eta^2-C\equiv CPh)(\mu-PPh_2)Ni(PPh_3)]$ by Cleavage of the Central C–C Single Bond in PhC=C–C=CSiMe₃ and of the P–C Bond in Ph₃P, and Coupling of the Fragments to PhC=CSiMe₃

Siegmar Pulst, Perdita Arndt, Wolfgang Baumann, Annegret Tillack, Rhett Kempe and Uwe Rosenthal* Max-Planck-Gesellschaft, Arbeitsgruppe 'Komplexkatalyse' and der Universität Rostock, Buchbinderstrasse 5-6, D-18055 Rostock, Germany

An unexpected activation of the central C–C single bond of PhC=C–C=CSiMe₃ and of one P–C bond in Ph₃P and coupling of the fragments to PhC=CSiMe₃ was observed in the reaction of $[Ni(PPh_3)_2(\eta^2-PhC=C-C=CSiMe_3)]$ with $(C_5H_5)_2Ti'$ providing, *via* the tweezer-like titanocene nickel(0) triphenylphosphine bisacetylide complex $[(C_5H_5)_2Ti(\mu-\sigma, \eta^2-C=CSiMe_3)(C=CPh)Ni(PPh_3)]$ **1**, the phosphido-bridged σ - π -acetylide complex $[(C_5H_5)_2Ti(\mu-\sigma, \eta^2-C=CSiMe_3)(C=CPh)Ni(PPh_3)]$ **1**.

For some time we have been interested in the cleavage of the central C–C-single bond of buta-1,4-diynes by titanocene and zirconocene,^{1,2} and we were able to show that PhC=C–C=CSiMe₃ is not cleaved by titanocene alone but heterobime-tallic nickel(0)–titanium(II) systems work well giving a heterobimetallic tweezer-like bisacetylide complex (Scheme 1).³ In the reaction leading to complex 1 the phosphido-bridged titanium–nickel complex 2 (5–9% yield) and PhC=CSiMe₃ were interesting by-products. Complex 2 was obtained in 30% yield by reaction of the tweezer complex 1 with triphenyl-phosphine in boiling dioxane (Scheme 2).[†]

One phenyl group of Ph₃P is coupled selectively with the trimethylsilylacetylide moiety of the starting tweezer complex 1 to give PhC=CSiMe₃ which was detected by gas chromatography. Coordination of the remaining diphenylphosphido group leads to the first heterobimetallic phosphido-bridged σ - π -acetylide complex 2. The existence of the phosphido group indicates that the phenyl group in PhC=CSiMe₃ originates from the phosphine and not from butadiyne. The composition of complex 2 was verified as its thf adduct by elemental analysis, and IR and NMR spectra.[‡] Its ³¹P NMR spectrum shows an AX spin system, one signal of which is found in the region expected for phosphines and the other shifted downfield at δ 188.6.

The X-ray crystal structure 2§ (Fig. 1) exhibits a bent metallocene unit to which the atoms P(2) and C(1) are coordinated. The relatively long Ti-Ni distance of 2.834 Å cannot be considered as a bonding interaction between the metals. The short Ti-C(1) distance and the bonding geometry of the alkynyl group [C(1)-Ti 2.065(8) Å, Ti-C(1)-C(2)] $163.2(6)^{\circ}$, C(1)–C(2)–C(3) 146.7(7)°] show the possibility of a π -interaction between titanium and the organic π -system along the σ -bond, e.g. Ti=C=C. The two Ni–P distances are different [Ni-P(1) 2.165(2), Ni-P(2) 2.181(2) Å]. Bond lengths and angles of 2 are similar to those in the phosphido-bridged homobimetallic σ - π -acetylide complexes [Fe₂(CO)₅- $(C_2Ph)(PPh_2)(PPh_3)],^4 [Fe_2(CO)_6(C_2Ph)(PPh_2)],^5 [M_2(CO)_6 \{\mu - \sigma, \eta^2 (C \equiv C B u^i)\}(\mu - P P h_2)\}$ (M = Fe, Ru, Os)⁶ prepared from phosphinoacetylenes Ph2PC=CBut and metal carbonyls by cleavage of the P–C $_{\rm sp}$ bond. The preparation of 2 provides the first example of actually separating the two acetylide units of a butadiyne into two molecules. A possible mechanism for the reaction from 1 to 2 includes the transfer of one phenyl group (e.g. via ortho-metallation⁷) and the alkynyl group to the nickel

Fig. 1 Crystal structure of 2 at the 50% probability level for thermal ellipsoides. Solvent molecule is omitted. Selected bond lengths (Å) and angles (°): C(1)-C(2) 1.265(10), C(2)-C(3) 1.453(11), Ti-C(1) 2.065(8), Ti-Ni 2.834, Ti-P(2) 2.516(2), Ni-C(1) 1.943(6), Ni-C(2) 2.007(7), Ni-P(1) 2.165(2), Ni-P(2) 2.181(2), C(2)-C(1)-Ti 163.2(6), C(1)-C(2)-C(3) 146.7(7), Ni-P(2)-Ti 73.2(1), P(1)-Ni-Ti 172.8(1).

centre, formation of an unstable *cis*-phenyl-alkynyl nickel(II) complex and subsequent reductive elimination of PhC=CSiMe₃.

Received, 5th April 1995; Com. 5/02171E

Footnotes

[†] General procedure for preparation of **2**. A solution of **1** (90 mg, 0.129 mmol³) and PPh₃ (34 mg, 0.129 mmol) in dioxane (30 ml) was refluxed for 30 h. The crude product, obtained after evaporation of the volatile material, was analysed by ¹H NMR spectroscopy, which showed a 1 : 1 mixture of **1** and **2**. Recrystallization from thf-*n*-hexane gave 32 mg (0.038 mmol, 30% yield) of **2**: mp, 129 °C; *m/z*: 784 (M⁺).

f Spectral data for 2: IR (Nujol): 1801 cm⁻¹ (v_{cmc}), elemental analysis for C₄₈H₄₀NiP₂Ti·0.7C₄H₈O (M₇ 835.32): calc.: C, 73.0; H, 5.5; found: C, 72.8; H, 5.6%; NMR (CD₃C₆D₅): ¹H: δ 5.07 (d, J 2 Hz, C₅H₅), 6.77–6.85 (m, m+ p-Ph), 7.08 (m, o-C-Ph), 7.43 (m, o-PPh₃), 7.47 (m, o-PPh₂); ¹³C {¹H}: 101.5 (s, C₅H₅), 124.4 (s, p-C-Ph), 127.1 (d, J 1 Hz, p-PPh₂), 127.2 (d, J 9 Hz, m-PPh₃), 130.1 (s, o-C-Ph), 128.1 (d, J 9 Hz, o-PPh₂), 134.5 (d, J 1 Hz, o-PPh₃), 134.6 (d, J 5 Hz, ipso-C-Ph), 136.9 (dd, J 34, 2 Hz, ipso-PPh₃), 143.1 (d, J 1 Hz, β-C≡), 223.2 (d, J 10 Hz, α-C≡); the fifth quaternary C-atom could not be detected; ³¹P NMR: δ 46.7 (d, J 22 Hz), 188.6 (d, J 22 Hz). § X-Ray structure analysis of **2**: CAD4 diffractometer, graphite-mono-chromated Mo-Kα radiation, solution of structures by direct methods (SHELXS 86);⁸ refinement with full-matrix least squares against F²

(SHELXL 93).⁹ The red-brown crystals of **2** grew with 0.7 solvent molecule (thf) per formula unit; monoclinic, space group $P2_1/c$; a = 16.446(1), b = 13.371(1), c = 20.272(1) Å, $\beta = 102.268(5)^\circ$; V = 4356.0(5) Å³, Z = 4, $D_c = 1.274$ g cm⁻³; 7875 reflections measured, 4430 observed { $I > 2\sigma(I)$, R = 0.0716, wR2 = 0.2060 [$I > 2\sigma(I)$], 459 refined parameters}; $2\theta_{max} = 49.92^\circ$. Atomic coordinates, bond lengths and angles, and thermal parameters have been deposited at the Cambridge Crystallographic Data Centre. See Information for Authors, Issue No. 1.

References

- 1 U. Rosenthal and H. Görls, J. Organomet. Chem., 1992, 439, C36.
- 2 U. Rosenthal, A. Ohff, W. Baumann, R. Kempe, A. Tillack and V. V. Burlakov, *Organometallics*, 1994, 13, 2903.
- 3 U. Rosenthal, S. Pulst, P. Arndt, A. Ohff, A. Tillack, W. Baumann, R. Kempe and V. V. Burlakov, *Organometallics*, 1995, 14, 2961.
- 4 H. A. Patzel, R. G. Fischer, A. J. Carty, D. V. Naik and G. J. Palenik, J. Organomet. Chem., 1973, 60, C49.
- 5 W. F. Smith, J. Yule, N. J. Taylor, H. N. Paik and A. J. Carty, *Inorg. Chem.*, 1977, 16, 1593.
- 6 A. A. Cherkas, L. H. Randall, S. A. MacLaughlin, G. N. Mott, N. J. Taylor and A. J. Carty, *Organometallics*, 1988, 7, 969.
- 7 F. Heydenreich, A. Mollbach, G. Wilke, H. Dreeskamp, E. G. Hoffmann, G. Schroth, K. Seevogel and W. Stempfle, *Isr. J. Chem.*, 1972, 10, 293.
- 8 G. M. Sheldrick, Acta Crystallogr., Sect. A, 1990, 46, 467.
- 9 G. M. Sheldrick, unpublished.